
7th Canadian Conference on Earthquake Engineering / Montreal / 1995 
7ierne Conference canadienne sur le genie paraseismique / Montreal / 1995 

The Seismic Performance of 
Different Strength Structural Walls 

M. Sasani' and D.L. Anderson' 

ABSTRACT 

An investigation of seismic structural walls with different strengths, different cross sections and 
different periods has been carried out to compare the performance of these structural systems in terms 
of maximum concrete compressive strain or maximum steel strain . The results show that, except for 
short period structures, weaker structures perform as well if not better than stronger structures. An 
equation for calculating plastic hinge length has been interpreted. Considering the amount of 
reinforcement in the section and low-cycle fatigue, a definition for an idealized moment-curvature 
relationship has been suggested. 

INTRODUCTION 

To design a structure properly for seismic loads, one should identify the critical regions that 
govern the design and then detail them with care. As long as safety (ultimate) level design under strong 
ground motions is concerned, in most cases economical design of the structures forces the designer to 
accept inelastic behavior of the system. Consequently adequate inelastic performance of the critical 
regions of the structure is of primary concern for a well designed system. Thus, seismic design is 
different from gravity load design and one of the issues that comes up is what should be the basis for 
design, should it be based on forces or should control of deformations be the design criteria. This paper 
will attempt to show that a deformation based design criteria may produce structures with more uniform 
levels of safety than the more traditional force based designs. 

Assume that the strength of a structural wall, with the same concrete cross section, is increased 
by 50% by adding more reinforcement, and that this has negligible effect on the stiffness of the section 
(this effect will be considered later). As is shown in Fig. 1, by assigning equal displacement ductility 
to both walls, the stronger wall is assumed to have higher displacement capacity by the same 50%. But 
is it true? It can be shown that by increasing the reinforcement ratio in a section, even in both the 
tension and compression faces, the displacement capacity of the wall is decreased. This implies that 
a weaker wall is as good as a more heavily reinforced or stronger wall. In fact, there may be less 
damage in the weaker or lightly reinforced wall. 

An attempt has been made to investigate the performance of single structural walls under severe 
seismic loading. The main variable is the amount of longitudinal reinforcement in the section. To take 
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into account the effects of axial load, different levels of compressive stress are considered, and to 
consider the effects of the periods of the structures, different height walls have been used. Also, 
sections with and without boundary elements have been considered. 

STRUCTURAL WALLS USED IN THIS STUDY 

Walls of 5, 10 and 15 stories, with 3.6 m story heights, are studied. The 5 and 10-story walls 
have a uniformly reinforced rectangular cross section, whereas the 15-story wall has boundary elements 
(Fig. 2). The axial load is assumed to give a compressive stress at the base level close to 0.05 fc  and 
0.1 f'c, for the 5 and 10-story walls, respectively. The compressive stress on the boundary elements 
of the 15-story wall, assuming all vertical load is carried by the boundary elements, is 0.33 f c. 
The horizontal masses are assumed to be 2.5, 1.5 and 1.0 times of vertical masses for the 5, 10 and 
15-story walls respectively. For rectangular sections, vertical reinforcement ratios p, = 0.0025, 
0.0050 and 0.0075 have been used, and for sections with boundary elements, the vertical reinforcement 
ratio in the wall panel = 0.0025 and vertical reinforcement ratios in the boundary elements 
pcci  = 0.01, 0.02 and 0.03 have been considered. The inelastic behavior is limited to flexural yielding, 
and Rayleigh damping of 5% in the first two modes is prescribed. 

EQUIVALENT PLASTIC HINGE LENGTH 

To make it possible to compare capacities and demands (capacities in terms of curvature and 
demands in terms of displacement) a definition for equivalent plastic hinge length, 1p, is necessary. For 
members with typical beam and column proportions, Paulay and Priestley (1992) have suggested that 

1p - 0.08 H + 0.022 fy  db [1] 

where H is the distance between points of maximum and zero moment, db  is the diameter of longitudinal 
reinforcement anchoring the member into a joint or footing, and fy  is the steel bar yield stress in MPa. 
They mention that the above equation gives an equivalent plastic hinge length close to 0.5 l„„, in 
which 1, is the length of the wall. Clearly, this will not apply to the stubby 5-story wall of this study. 

Mattock (1967) in his discussion of Corley's paper (1966), suggests the following equation: 

/P  - 0 5 d + 0.05 H [2] 

where d is the effective depth of the section. He mentions that, for large values of d, his equation 
produces larger plastic hinge lengths than could be concluded from Corley's paper. Interpreting 
Corley's results in terms of 1p  results in the following: 

/P 0 5 d + 0.032 H
[3] 

In this equation all lengths are in meters. This equation, which gives a reasonable value for walls with 
different height to length ratios, has been used in this study. It is assumed that for the rectangular 
sections d = 0.8 1„ = 5.36m, and for the wall with boundary elements d = 6.35m. The equivalent -
plastic lengths for the 5, 10 and 15-story structural walls become 2.93m, 3.18m and 3.86m respectively. 

438 



IDEALIZED MOMENT-CURVATURE RELATIONSHIPS 

To define an elastic-perfectly plastic behavior for the sections, three parameters should be defined, 
effective flexural stiffness, yield or ultimate strength, and ultimate curvature. These parameters will 
be defined in this section, along with assumptions for material properties. 

Material Properties and Modeling 

Both longitudinal and transverse reinforcement are assumed to have fy  =410 MPa. To take into 
account overstrength of the reinforcement and its detrimental effect on ductility, a factor of 1.15 is 
applied to both fy, and fu  of the longitudinal steel (Paulay and Priestley 1992). Strain at rupture has been 
taken equal to 0.12. Figure 3a shows the stress-strain relationship for steel bars. 

Concrete having a nominal compressive strength, re, of 27.5 MPa is assumed where the 
maximum stress occurs at the strain of e0  = 0.002. The modified Kent-Park model is used to describe 
the stress-strain relation for both confined and unconfined concrete (Park et al 1982). To include tension 
stiffening in the effective flexural stiffness of sections, the average tensile concrete stress model 
suggested by Vecchio and Collins (1986) is used. These stress-strain relationships are shown in Fig 3b. 

To define the available maximum concrete strain different equations have been introduced by Scott 
et al (1982) and by Kaar et al (1978) which lead to quite different results. For confinement as defined 
by ACI 318-89 these equations predict maximum usable concrete strains of 0.0208 and 0.0059 
respectively. In this study available maximum concrete strains for unconfined and confined concrete 
are assumed to be 0.004 and 0.015 respectively. 

Effective Flexural Stiffness of the Sections 

It is assumed that for a wall with a moderate amount of vertical reinforcement, taken here to be 
= 0.5% for the uniformly reinforced rectangular walls and pc01  = 2% in the walls with boundary 

elements, Eleff = 0.5 EIg  of the concrete section. This results in T1  = 0.46s, 1.30s and 1.76s for 5, 
10 and 15-story walls respectively. To alter Eleff  as the reinforcement ratio changes, the following 
procedure has been adopted. 

Using the computer program BIAX (Wallace 1992) the moment curvature relations for sections 
with moderate reinforcement (and prescribed axial load), using the Park et al model (1982) for concrete 
in compression and Vecchio and Collins model (1986) for concrete in tension, are developed. The 
resulting effective moment-curvature for rectangular section with axial load equal to 6 MN, is shown 
by dashed curve in Fig. 4. The values of moment and curvature where first yield occurs, point A in 
Fig. 4, are used to define a secant stiffness, Elsec. The ratio EIeff/EIsec  derived for the moderately 
reinforced section and corresponding axial load, is then used to modify the EIw  for walls with other 
reinforcement ratios to produce their Eleff. The results for rectangular sections with P = 6 MN are 
shown in Fig. 5. The same procedure has been used for rectangular section with P = 3 MN and 
section with boundary elements with P = 9 MN. It should be mentioned that although the values of the 
flexural moments in the above calculations could be larger than real strength of the section, the 
calculated moment of inertia is a representative of the average cracked and uncracked moment of inertia 
over the length of the walls that have experienced yielding. 
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Ultimate Curvature of the Sections 

The ultimate moment curvature, cl'u, is defined as the curvature when either (i) the strain of the 
concrete in compression reaches the maximum value; (ii) the reinforcing steel strain reaches its ultimate 
value (0.12); or (iii) the moment capacity reduces to less than 80% of the maximum capacity. Which 
ever of these three conditions occurs first defines the value of (Xiaoxuan and Moehle 1991). It has 
been observed that under cyclic loading ultimate curvature capacity is somewhat less than ultimate 
monotonic curvature capacity. Fajfar (1992) suggests the following equation to relate cyclic 
displacement ductility capacity, AA, to monotonic ductility capacity, g.' 

ILA
Jl + 4 DM 3 y2  p.'A  

2I3y2
[4] 

In the above equation DM is the damage index, which in the case of safety limit design is equal to 1.0. 
Equation 4, which is based on low cycle fatigue using the Park-Ang damage model, implies the same 
relation between cyclic curvature capacity (i)u), and monotonic curvature capacity (c13'u). Fajfar suggests 
using average values of 1.0 and 0.15 for 7 and 0, respectively. Using these values, Eq. 4 reduces to 

- 3.33 (J1 + 0.6 WA  - 1) [5] 

Idiya and Bertero (1980) have tested different structural walls under monotonic and cyclic loading. 
It has been observed that for walls having monotonic displacement ductility capacities of it'A  = 5.0 and 
6.1, for the rectangular section and the section with boundary elements, respectively, the cyclic 
displacement ductility capacity has been decreased to ;L0=3.1 and 4.2. Equation 5 predicts µo=3.3 and 
3.9, which are in good agreement with the test results. 

To replace displacement ductility with curvature ductility, the following relation , suggested by 
Paulay and Uzumeri (1975), is used for the walls in this study: 

µs-1 

[6] 

This equation was derived for a single degree of freedom mass on a cantilever column of height H'. 
For walls with an inverted triangular load distribution of height H, a similar expression might be used 
in terms of /LA  based on displacements at the top of the wall if H' is replaced by H and the coefficient 
3.0 is replaced by 3.6. 

Ultimate Bending Moment Strength of the Sections 

Ultimate bending strength of the section is defined by the horizontal line that crosses the moment 
curvature curve at a point 2/3 away from (13u  as shown in Fig. 4 (cl)p  = (Du  - (1)y) This has been 
applied to several walls with different amounts of reinforcement and appears to give reasonable 
estimates of yield strength to be used in an elastic-perfectly plastic model. Some of the idealized 
moment-curvature relationships are shown in Fig. 6. As it can be seen the higher the reinforcement ratio 
in the section, the less the ultimate curvature cbu. 

IL+  - 1 + 
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DISPLACEMENT CAPACITIES AND DEMANDS 

Assuming an inverted triangular distribution for the lateral load, the yield displacement at the top 
of the structural wall is AY  =40Y  H2/3.6 if 4 = My/El. Therefore the displacement capacity at the top 
of the structural wall is given by 

2  
Arc ) 

+(41u 
 - 4,y H 

3.6 2 
[71 

To find displacement demand sixteen accelerograms all recorded on rock sites with PGA > 0.2g 
and PGV> 0.2 m/s2  have been used in this study. Nonlinear time step analyses have been carried out 
with the elastic-plastic moment curvature relations using the computer program DRAIN-2DX. The 
ground motions were scaled to give displacement demands equal to displacement capacity for walls with 
a medium amount of reinforcement. The scaled records were then used to calculate the displacement 
demand for comparison to the displacement capacity for walls with lower and higher reinforcement 
ratios. Table 1 shows the results where the displacement demand is the average demand from the use 
of the sixteen records. 

DISCUSSION 

For 5, 10, and 15-story structural walls, the average scaling factors used on the records are 1.65, 
2.15 and 8.17, respectively. If these walls with moderate amount of reinforcement were checked using 
NBCC (1990), for walls with 5, 10, and 15 stories the corresponding zonal velocity ratio, u, would be 
0.40, 0.30, and 0.80, respectively. The average PGA and PGV of the sixteen records are 0.47g and 
0.46 m/s. These values imply a very good performance of structural walls under severe earthquakes. 
The overall drift demands for 5, 10 and 15-story walls are 1/185, 1/144 and 1/43, respectively. 

The results show that, for 10-story walls (with T1  between 1.25s and 1.36s) and 15-story walls 
(with T1  between 1.66s and 1.96s), displacement demands and displacement capacity are almost the 
same. In contrast, for 5-story walls (with T1  between 0.43s and 0.49s) decreasing the amount of 
reinforcement in the section leads to poorer performance. Although lateral drifts for 5 and 10-story 
lightly reinforced walls are acceptable, for 15-story walls, reduction in reinforcement from ped,-.02 
to pcol=  .01 results in increasing overall drift from 1/43 to 1/37, both of which are large values. 

CONCLUSION 

Based on this limited investigation it is concluded that, except for short period structural walls, 
an increase in strength has little effect on the performance of the structure as measured by the curvature 
or displacement capacity. It should be noted that the stronger and the stiffer the wall, the smaller the 
lateral displacement. Thus, particularly in the case of sections with boundary elements, reduction in the 
amount of reinforcement might lead to unacceptable lateral displacement for the nonstructural elements. 
Perhaps it is time to consider displacement as a design criterium along with force. 

This study has shown the very good performance of structural walls against severe earthquake, 
as noted by other authors. 
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TABLE 1. Displacement demands and capacities (in meters) 

No. of Stories 
of 

Structural Wall 

Section 
Type 

p, = .0025 (Rectangular Section) 
pcd= .01 (Barbell Section) 

p, = .0050(Rectan.) 
pod= .02 (Barbell) 

ps, = .0075(Rectangular Section) 
p,,,I= .03 (Barbell Section) 

Light Reinforcement Moderate Reinforcement Heavy Reinforcement 

Capacity Demand Capacity = Demand Capacity Demand 

5 Rectan. 0.109 0.126 0.0975 0.0905 0.0814 

10 Recta°. 0.266 0.267 0.250 0.243 0.248 

15 Barbell 1.510 1.460 1.270 1.140 1.180 

D170 

5 30 n-t I .701 

6.70 m 

I 17.3o 

.30 

FIGURE 1. Force—displacement 
relationships for constant 
displacement ductility 

FIGURE 2. Rectangular section 
and section with boundary 
elements (barbell section) 
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